SMAD pathway mediation of BDNF and TGFβ2 regulation of proliferation and differentiation of hippocampal granule neurons

Author:

Lu Jie1,Wu Yan1,Sousa Nuno2,Almeida Osborne F. X.1

Affiliation:

1. NeuroAdaptations Group, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, D-80804 Munich, Germany

2. Neuroscience Group, Life and Health Sciences Research Institute (ICVS),University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Abstract

Hippocampal granule cells self-renew throughout life, whereas their cerebellar counterparts become post-mitotic during early postnatal development, suggesting that locally acting, tissue-specific factors may regulate the proliferative potential of each cell type. Confirming this, we show that conditioned medium from hippocampal cells (CMHippocampus)stimulates proliferation in cerebellar cultures and, vice versa, that mitosis in hippocampal cells is inhibited by CMCerebellum. The anti-proliferative effects of CMCerebellum were accompanied by increased expression of the cyclin-dependent kinase inhibitors p21 and p27, as well as markers of neuronal maturity/differentiation. CMCerebellumwas found to contain peptide-like factors with distinct anti-proliferative/differentiating and neuroprotective activities with differing chromatographic properties. Preadsorption of CMCerebellumwith antisera against candidate cytokines showed that TGFβ2 and BDNF could account for the major part of the anti-proliferative and pro-differentiating activities, an interpretation strengthened by studies involving treatment with purified TGFβ2 and BDNF. Interference with signaling pathways downstream of TGFβ and BDNF using dominant-negative forms of their respective receptors (TGFβ2-RII and TRKB) or of dominant-negative forms of SMAD3 and co-SMAD4 negated the anti-proliferative/differentiating actions of CMCerebellum. Treatment with CMCerebellum caused nuclear translocation of SMAD2 and SMAD4, and also transactivated a TGFβ2-responsive gene. BDNF actions were shown to depend on activation of ERK1/2 and to converge on the SMAD signaling cascade, possibly after stimulation of TGFβ2 synthesis/secretion. In conclusion, our results show that the regulation of hippocampal cell fate in vitro is regulated through an interplay between the actions of BDNF and TGFβ.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3