Ral GTPase promotes asymmetric Notch activation in the Drosophila eye in response to Frizzled/PCP signaling by repressing ligand-independent receptor activation

Author:

Cho Bomsoo1,Fischer Janice A.1

Affiliation:

1. Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA

Abstract

Ral is a small Ras-like GTPase that regulates membrane trafficking and signaling. Here, we show that in response to planar cell polarity (PCP) signals, Ral modulates asymmetric Notch signaling in the Drosophila eye. Specification of the initially equivalent R3/R4 photoreceptor precursor cells in each developing ommatidium occurs in response to a gradient of Frizzled (Fz) signaling. The cell with the most Fz signal (R3) activates the Notch receptor in the adjacent cell (R4) via the ligand Delta, resulting in R3/R4 cell determination and their asymmetric positions within the ommatidium. Two mechanisms have been proposed for ensuring that the cell with the most Fz activation sends the Delta signal: Fz-dependent transcriptional upregulation in R3 of genes that promote Delta signaling, and direct blockage of Notch receptor activation in R3 by localization of an activated Fz/Disheveled protein complex to the side of the plasma membrane adjacent to R4. Here, we discover a distinct mechanism for biasing the direction of Notch signaling that depends on Ral. Using genetic experiments in vivo, we show that, in direct response to Fz signaling, Ral transcription is upregulated in R3, and Ral represses ligand-independent activation of Notch in R3. Thus, prevention of ligand-independent Notch activation is not simply a constitutive process, but is a target for regulation by Ral during cell fate specification and pattern formation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3