Improperly folded green fluorescent protein is secreted via a non-classical pathway

Author:

Tanudji Marcel1,Hevi Sarah1,Chuck Steven L.1

Affiliation:

1. Molecular Medicine Unit, Department of Medicine, Beth Israel, Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA

Abstract

The green fluorescent protein is a cytosolic protein frequently used as a molecular tag to study protein localization in intact cells. We discovered that this protein is secreted into the medium by several but not all cell lines through a non-classical secretory pathway that is insensitive to brefeldin A. Green fluorescent protein is secreted efficiently by Chinese hamster ovary cells, with 60% of synthesized proteins secreted over 8 hours. This pathway is sensitive to changes in temperature but not to factors in serum or chemicals known to affect other non-classical protein secretion pathways. Fluorescence is observed in cells expressing green fluorescent protein, indicating that some of the protein must be fully folded in the cytosol. However, secreted green fluorescent protein is not fluorescent and therefore not folded properly. Furthermore, cellular fluorescence does not change over 6 hours whereas a significant proportion of green fluorescent protein is secreted. Thus, nascent green fluorescent protein either is folded correctly or incorrectly, and the improperly folded molecules can be exported. Non-classical secretion might be a route by which cells remove an excess of improperly folded, cytosolic proteins.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference48 articles.

1. Andrei, C., Dazzi, C., Lotti, L., Torrisi, M. R., Chimini, G. and Rubartelli, A. (1999). The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell10, 1463-1475.

2. Berggren, M., Gallegos, A., Gasdaska, J. R., Gasdaska, P. Y.,Warneke, J. and Powis, G. (1996). Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res.16, 3459-3466.

3. Berks, B. C., Sargent, F. and Palmer, T.(2000). The Tat protein export pathway. Mol. Microbiol.35, 260-274.

4. Bokman, S. H. and Ward, W. W. (1981). Renaturation of Aequorea greefluorescent protein. Biochem. Biophys. Res. Commun.101, 1372-1380.

5. Bychkova, V. E., Pain, R. H. and Ptitsyn, O. B.(1988). The `molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett.238, 231-234.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3