Normal timing of oligodendrocyte development from genetically engineered,lineage-selectable mouse ES cells

Author:

Billon Nathalie1,Jolicoeur Christine1,Ying Qi Long2,Smith Austin2,Raff Martin1

Affiliation:

1. MRC Laboratory for Molecular Cell Biology and Cell Biology Unit and the Biology Department, University College London, London WC1E 6BT, UK

2. Centre for Genome Research, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, UK

Abstract

Oligodendrocytes are post-mitotic cells that myelinate axons in the vertebrate central nervous system (CNS). They develop from proliferating oligodendrocyte precursor cells (OPCs), which arise in germinal zones, migrate throughout the developing white matter and divide a limited number of times before they terminally differentiate. Thus far, it has been possible to purify OPCs only from the rat optic nerve, but the purified cells cannot be obtained in large enough numbers for conventional biochemical analyses. Moreover, the CNS stem cells that give rise to OPCs have not been purified, limiting one's ability to study the earliest stages of commitment to the oligodendrocyte lineage. Pluripotent, mouse embryonic stem (ES) cells can be propagated indefinitely in culture and induced to differentiate into various cell types. We have genetically engineered ES cells both to positively select neuroepithelial stem cells and to eliminate undifferentiated ES cells. We have then used combinations of known signal molecules to promote the development of OPCs from selected, ES-cell-derived, neuroepithelial cells. We show that the earliest stages of oligodendrocyte development follow an ordered sequence that is remarkably similar to that observed in vivo, suggesting that the ES-cell-derived neuroepithelial cells follow a normal developmental pathway to produce oligodendrocytes. These engineered ES cells thus provide a powerful system to study both the mechanisms that direct CNS stem cells down the oligodendrocyte pathway and those that influence subsequent oligodendrocyte differentiation. This strategy may also be useful for producing human cells for therapy and drug screening.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3