Loss of Prm1 leads to defective chromatin protamination, impaired PRM2 processing, reduced sperm motility and subfertility in male mice

Author:

Merges Gina Esther1ORCID,Meier Julia1,Schneider Simon1ORCID,Kruse Alexander2ORCID,Fröbius Andreas Christian2ORCID,Kirfel Gregor3,Steger Klaus2ORCID,Arévalo Lena1ORCID,Schorle Hubert1ORCID

Affiliation:

1. Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany

2. Biomedical Research Center of the Justus-Liebig University 2 Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology , , 35392 Giessen , Germany

3. Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn 3 , 53121 Bonn , Germany

Abstract

ABSTRACT One of the key events during spermiogenesis is the hypercondensation of chromatin by substitution of the majority of histones by protamines. In humans and mice, protamine 1 (PRM1/Prm1) and protamine 2 (PRM2/Prm2) are expressed in a species-specific ratio. Using CRISPR-Cas9-mediated gene editing, we generated Prm1-deficient mice and demonstrated that Prm1+/− mice were subfertile, whereas Prm1−/− mice were infertile. Prm1−/− and Prm2−/− sperm showed high levels of reactive oxygen species-mediated DNA damage and increased histone retention. In contrast, Prm1+/− sperm displayed only moderate DNA damage. The majority of Prm1+/− sperm were CMA3 positive, indicating protamine-deficient chromatin, although this was not the result of increased histone retention in Prm1+/− sperm. However, sperm from Prm1+/− and Prm1−/− mice contained high levels of incompletely processed PRM2. Furthermore, the PRM1:PRM2 ratio was skewed from 1:2 in wild type to 1:5 in Prm1+/− animals. Our results reveal that PRM1 is required for proper PRM2 processing to produce mature PRM2, which, together with PRM1, is able to hypercondense DNA. Thus, the species-specific PRM1:PRM2 ratio has to be precisely controlled in order to retain full fertility.

Funder

Deutsche Forschungsgemeinschaft

Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3