Absence of a robust mitotic timer mechanism in early preimplantation mouse embryos leads to chromosome instability

Author:

Allais Adélaïde1,FitzHarris Greg12ORCID

Affiliation:

1. Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) 1 , H2X 0A9 Montréal, Québec , Canada

2. Université de Montréal 2 Department of OBGYN, and Department of Pathology and Cell Biology , , H3T 1C5 Montréal, Québec , Canada

Abstract

ABSTRACT Preimplantation embryos often consist of a combination of euploid and aneuploid cells, suggesting that safeguards preventing the generation and propagation of aneuploid cells in somatic cells might be deficient in embryos. In somatic cells, a mitotic timer mechanism has been described, in which even a small increase in the duration of M phase can cause a cell cycle arrest in the subsequent interphase, preventing further propagation of cells that have undergone a potentially hazardously long M phase. Here, we report that cell divisions in the mouse embryo and embryonic development continue even after a mitotic prolongation of several hours. However, similar M-phase extensions caused cohesion fatigue, resulting in prematurely separated sister chromatids and the production of micronuclei. Only extreme prolongation of M phase caused a subsequent interphase arrest, through a mechanism involving DNA damage. Our data suggest that the simultaneous absence of a robust mitotic timer and susceptibility of the embryo to cohesion fatigue could contribute to chromosome instability in mammalian embryos. This article has an associated ‘The people behind the papers’ interview.

Funder

Canadian Institutes of Health Research

Fondation Jean-Louis Lévesque

Université de Montréal

McGill University

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3