Daily variations of endolymph composition: relationship with the otolith calcification process in trout

Author:

Borelli G.1,Guibbolini M. E.1,Mayer-Gostan N.1,Priouzeau F.1,De Pontual H.2,Allemand D.1,Puverel S.3,Tambutte E.3,Payan P.1

Affiliation:

1. Laboratoire Réponse des Organismes aux Stress Environnementaux, UMR INRA-UNSA 1112, Université de Nice-Sophia Antipolis, Faculté des Sciences, BP 71, 06108 Nice Cedex 2, France

2. IFREMER, DRV, RH, Laboratoire de Sclérochronologie des Animaux Aquatiques, BP 70, 29280 Plouzané, France

3. Centre Scientifique de Monaco, Avenue Saint-Martin, MC-98000 Monaco,Principality of Monaco

Abstract

SUMMARYIonic and organic parameters of the otolith calcification process in the trout Oncorhynchus mykiss were analysed in plasma and endolymph over the day:night cycle. Plasma pH remained constant and total CO2concentration was significantly lower (by 21%) during the day than at night. Calcifying parameters (total CO2, total calcium concentration) were measured in the proximal and distal endolymphs and were unchanged in the latter during the day:night cycle, but fluctuated in the former. Non-collagenous protein and collagen concentrations in endolymph were higher(1.5- and 10-fold, respectively) during the day than at night. As there was no change in total calcium concentration, we propose that Ca2+increases during the dark period and was maximal by the end of the night when the total CO2 concentration has also increased (by 14%). Measurements of endolymph pH in situ revealed significant differences between samples from proximal and distal endolymph (7.38 and 7.87,respectively), but no variation between values obtained during the day and at night. Thus, the saturation state of aragonite (Sa) in the proximal endolymph should fluctuate around unity during the day:night cycle, and CaCO3precipitation should occur when supersaturation is reached. The electrophoretic pattern of proximal endolymph showed variations in both major and minor components. Immunoblotting of endolymph, using a rabbit antiserum raised against the otolith soluble organic matrix revealed an increase in the expression of two proteins (65 kDa and 75 kDa) during the day period. We propose that organic matrix and calcium carbonate deposition on the otolith vary antiphasically: organic matrix deposition begins by the end of the day period, when the concentration of organic precursors is maximal in the endolymph, whereas CaCO3 precipitation starts once the solubility of CaCO3 is exceeded.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3