Affiliation:
1. Department of Zoology, University of Cambridge, UK.
Abstract
1. The modulatory actions of myomodulin A on tension generated in the extensortibiae muscle of the locust hindleg by stimulation of the slow excitatory motoneurone (SETi) depend upon the frequency of stimulation. Myomodulin A has no consistent effect on the tension induced by the fast extensor motoneurone (FETi) or upon the myogenic rhythm present in the extensor. The effects of a range of structurally related neuropeptides have also been assessed. 2. At low frequencies of SETi stimulation (1 Hz and below), the predominant modulatory effects are increases in the amplitude, contraction rate and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), these effects are superimposed upon an increase of maintained tension. 3. The modulatory actions of myomodulin-like peptides show some similarities to and some differences from the modulatory actions of octopamine, proctolin and FMRFamide-like neuropeptides in this preparation, but are likely to be mediated via a distinct set of receptors. 4. The results of the present study, taken together with the localization of myomodulin-like immunoreactivity in specific sets of neurones in the locust nervous system, suggest the presence of a novel modulatory system in insects that uses myomodulin-like neuropeptides. It also indicates that myomodulins, which were first identified in molluscs, may represent another interphyletic family of neuropeptides.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献