Abstract
Unrestrained crabs instrumented with probes for ultrasonic measurement of arterial haemolymph flow were subjected to 6 h of hypoxic exposure. During this interval, the inhalant O2 partial pressure was reduced in steps from 18 to 3 kPa. Measurement of haemolymph flow through all arteries leaving the heart allowed direct calculation of cardiac output, stroke volume and the distribution of cardiac output for both non-stressed and hypoxic animals. Resting levels of cardiac output were low compared with previously reported values for this and other species of decapod crustaceans. During exposure to the most severe level of hypoxia tested, haemolymph flow through the anterior arteries decreased while flow through the posterior aorta and sternal artery increased by 55 % and 27 % respectively. Cardiac output increased from a control value of 9.8±1.6 to 11.9±1.2 ml kg-1 min-1 despite a decrease in heart-beat frequency. Scaphognathite beat frequency increased from 82.1±4.3 min-1 to more than 120 min-1 after 90 min of hypoxic exposure and remained at this level for the duration of the exposure period. The decrease in haemolymph flow, via the anterior arteries, to the antero-dorsal region of the animal concurrent with an increase in flow to the posterior and antero-ventral regions, via the posterior aorta and sternal artery, implicates an active mechanism for redistribution of haemolymph flow during hypoxic exposure. The high rate of scaphognathite pumping, presumably to maximise O2 uptake during experimental hypoxia, was probably made possible by an increased blood supply to these organs, which are perfused by downstream branches of the sternal artery.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cardiovascular physiology of decapod crustaceans: from scientific inquiry to practical applications;Journal of Experimental Biology;2024-07-22
2. Variation in metabolic rate during low tide aerial exposure in the Asian shore crab Hemigrapsus sanguineus;Marine Biology;2024-05-08
3. Emersion and hypoxia;Ecophysiology of the European Green Crab (Carcinus Maenas) and Related Species;2024
4. Respiratory and cardiovascular system;Ecophysiology of the European Green Crab (Carcinus Maenas) and Related Species;2024
5. Feeding and digestive processes;Ecophysiology of the European Green Crab (Carcinus Maenas) and Related Species;2024