The sphingosine rheostat is involved in the cnidarian heat stress response but not necessarily in bleaching

Author:

Kitchen Sheila A.1ORCID,Weis Virginia M.1

Affiliation:

1. Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA

Abstract

Sphingolipids play important roles in mitigating cellular heat and oxidative stress by altering membrane fluidity, receptor clustering and gene expression. Accumulation of signaling sphingolipids that comprise the sphingosine rheostat, pro-apoptotic sphingosine (Sph) and pro-survival sphingosine-1-phosphate (S1P), is key to determining cell fate. Reef-building corals and other symbiotic cnidarians living in shallow tropical waters can experience elevated seawater temperature and high UV irradiance, two stressors that are increasing in frequency and severity with climate change. In symbiotic cnidarians, these stressors disrupt the photosynthetic machinery of the endosymbiont and ultimately result in the collapse of the partnership (dysbiosis), known as cnidarian bleaching. In a previous study, exogenously applied sphingolipids altered heat-induced bleaching in the symbiotic anemone Aiptasia pallida, but endogenous regulation of these lipids is unknown. Here, we characterized the role of the rheostat in the cnidarian heat stress response (HSR) and in dysbiosis. Gene expression of rheostat enzymes sphingosine kinase (AP-SPHK) and S1P phosphatase (AP-SGPP), and concentrations of sphingolipids were quantified from anemones incubated at elevated temperatures. We observed a biphasic HSR in A. pallida. At early exposure, rheostat gene expression and lipid levels were suppressed while gene expression of a heat stress biomarker increased and 40% of symbionts were lost. After longer incubations at the highest temperature, AP-SGPP and then Sph levels both increased. These results indicate that the sphingosine rheostat in A. pallida does not participate in initiation of dysbiosis, but instead functions in the chronic response to prolonged heat stress that promotes host survival.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3