Affiliation:
1. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
Abstract
SUMMARYEmbryos of the pond snail, Helisoma trivolvis, develop bilateral serotonergic neurons that innervate ciliary bands and stimulate cilia-driven rotation. This behaviour is postulated to increase oxygen availability during hypoxia by mixing the capsular fluid. We hypothesised that the stimulation of ciliary-driven rotation by serotonin (5-HT) enhances the survival of embryos during prolonged hypoxia. Embryo rotation and survival were monitored in different levels of oxygen for 24–48 h while in the presence or absence of 5-HT (100 μmol l−1) or a 5-HT antagonist (50 μmol l−1). Long-term hypoxia caused delayed embryonic development that appeared morphologically normal. Hypoxia also induced a transient increase in rotation rate in embryos exposed to artificial pond water (APW) or 5-HT that lasted around 3 h. 5-HT-treated embryos had an elevated rotation rate over embryos in APW throughout the long-term exposure to hypoxia. Long-term anoxia also induced a transient increase in rotation rate in embryos exposed to APW or 5-HT. Rotation ceased in embryos exposed to APW by 13 h but persisted in 5-HT-treated embryos for up to 40 h. Fifty percent mortality was reached at 9 h of anoxia in embryos in APW and at 24 h in 5-HT-treated embryos. The 5-HT antagonist mianserin partially inhibited the 5-HT enhancement of rotation but not the prolongation of survival in anoxia. The ability of 5-HT to prolong survival in anoxia reveals a 5-HT-activated metabolic pathway that liberates an alternative energy source.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献