Reelin signaling directly affects radial glia morphology and biochemical maturation

Author:

Hartfuss Eva1,Förster Eckart2,Bock Hans H.3,Hack Michael A.1,Leprince Pierre4,Luque Juan M.5,Herz Joachim3,Frotscher Michael2,Götz Magdalena1

Affiliation:

1. Max-Planck-Institute of Neurobiology, Neuronal Specification, Am Klopferspitz 18a, D-82152 Martinsried, Germany

2. Institute of Anatomy, University of Freiburg, Albertstr.17, D-79104 Freiburg,Germany

3. Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd,Dallas, TX 75390-9046, USA

4. University of Liège, Center for Cellular and Molecular Neurobiology, 17 Place Delcour, B-4020 Liège, Belgium

5. Instituto de Neurociencias UMH/CSIC, Campus de San Juan s/n, E-03550 San Juan de Alicante, Spain

Abstract

Radial glial cells are characterized, besides their astroglial properties,by long radial processes extending from the ventricular zone to the pial surface, a crucial feature for the radial migration of neurons. The molecular signals that regulate this characteristic morphology, however, are largely unknown. We show an important role of the secreted molecule reelin for the establishment of radial glia processes. We describe a significant reduction in ventricular zone cells with long radial processes in the absence of reelin in the cortex of reeler mutant mice. These defects were correlated to a decrease in the content of brain lipid-binding protein (Blbp) and were detected exclusively in the cerebral cortex, but not in the basal ganglia of reeler mice. Conversely, reelin addition in vitro increased the Blbp content and process extension of radial glia from the cortex, but not the basal ganglia. Isolation of radial glia by fluorescent-activated cell sorting showed that these effects are due to direct signaling of reelin to radial glial cells. We could further demonstrate that this signaling requires Dab1, as the increase in Blbp upon reelin addition failed to occur in Dab1-/-mice. Taken together, these results unravel a novel role of reelin signaling to radial glial cells that is crucial for the regulation of their Blbp content and characteristic morphology in a region-specific manner.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3