Phosphorylation of chemoattractant receptors regulates chemotaxis, actin re-organization, and signal-relay

Author:

Brzostowski Joseph A.,Sawai Satoshi,Rozov Orr,Liao Xin-hua,Imoto Daisuke,Parent Carole A.,Kimmel Alan R.

Abstract

Migratory cells, like mammalian leukocytes and Dictyostelium, utilize G protein coupled receptor (GPCR) signaling to regulate MAPK/ERK, PI3K, TORC2/AKT, adenylyl cyclase, and actin polymerization, which collectively direct chemotaxis. Upon ligand binding, mammalian GPCRs are phosphorylated at cytoplasmic residues, uncoupling G protein pathways, but activating others. Still, connections between GPCR phosphorylation and chemotaxis are unclear. In developing Dictyostelium, secreted cAMP serves as a chemoattractant, with extracellular cAMP propagated as oscillating waves to ensure directional migratory signals. cAMP oscillations derive from transient excitatory responses of adenylyl cyclase, which then rapidly adapts. We have studied chemotactic signaling in Dictyostelium that express non-phosphorylatable cAMP receptors and show through chemotaxis modeling, single-cell FRET imaging, pure and chimeric population wavelet quantification, biochemical analyses, and TIRF microscopy, that receptor phosphorylation is required to regulate adenylyl cyclase adaptation, long-range oscillatory cAMP wave production, and cytoskeletal actin response. Phosphorylation defects, thus, promote hyperactive actin polymerization at the cell periphery, misdirected pseudopodia, and the loss of directional chemotaxis. Our data indicate that chemoattractant receptor phosphorylation is required to co-regulate essential pathways for migratory cell polarization and chemotaxis. Our results significantly extend the understanding of GPCR phosphorylation function, providing strong evidence that this evolutionarily conserved mechanism is required in a signal attenuation pathway that is necessary to maintain persistent directional movement of Dictyostelium, neutrophils, and other migratory cells.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3