Affiliation:
1. Department of Pharmacology, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
Abstract
The Wnt–β-catenin canonical signaling pathway is crucial for normal embryonic development, and aberrant expression of components of this pathway results in oncogenesis. Upon scanning for the mitogen-activated protein kinase (MAPK) pathways that might intersect with the canonical Wnt–β-catenin signaling pathway in response to Wnt3a, we observed a strong activation of p38 MAPK in mouse F9 teratocarcinoma cells. Wnt3a-induced p38 MAPK activation was sensitive to siRNAs against Gαq or Gαs, but not against either Gαo or Gα11. Activation of p38 MAPK is critical for canonical Wnt–β-catenin signaling. Chemical inhibitors of p38 MAPK (SB203580 or SB239063) and expression of a dominant negative-version of p38 MAPK attenuate Wnt3a-induced accumulation of β-catenin, Lef/Tcf-sensitive gene activation, and primitive endoderm formation. Furthermore, epistasis experiments pinpoint p38 MAPK as operating downstream of Dishevelleds. We also demonstrate that chemical inhibition of p38 MAPK restores Wnt3a-attenuated GSK3β kinase activity. We demonstrate the involvement of G-proteins and Dishevelleds in Wnt3a-induced p38 MAPK activation, highlighting a critical role for p38 MAPK in canonical Wnt–β-catenin signaling.
Publisher
The Company of Biologists
Cited by
164 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献