Involvement of protein phosphatase-1-mediated MARCKS translocation in myogenic differentiation of embryonic muscle cells

Author:

Kim Sang Soo1,Kim Jung Hwa1,Lee Seung-Hye2,Chung Sung Soo2,Bang Ok-Sun2,Park Dongeun2,Chung Chin Ha2

Affiliation:

1. These authors contributed equally to this work

2. NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, 56-1 Shinreem-dong, Kwanak-gu, Seoul 151-742, Korea

Abstract

Myristoylated alanine-rich C kinase substrate (MARCKS) translocates from the cytosol to the plasma membrane while mononucleated myoblasts fuse to form multinucleated myotubes. Here, we show that protein phosphatase-1-mediated dephosphorylation of MARCKS largely influences its subcellular localization and the fusion process. Treatment with okadaic acid or tautomycin, which are potent inhibitors of protein phosphatases and cell fusion, was found to reversibly block the MARCKS translocation. Moreover, the dephosphorylating activity against MARCKS markedly increased during myogenesis, and this increase was closely correlated with the membrane fusion of the cells. In addition, protein phosphatase-1 was identified as a major enzyme that is responsible for dephosphorylation of MARCKS. Furthermore, a mutation preventing MARCKS phosphorylation and thus facilitating MARCKS translocation resulted in promotion of the cell fusion. In contrast, overexpression of MARCKS carrying a mutation that blocks myristoylation and thus prevents the MARCKS translocation impaired the myoblast fusion. Together with the fact that MARCKS regulates the cytoskeleton dynamics by crosslinking the actin filaments in the plasma membrane and that myoblast fusion accompanies massive cytoskeleton reorganization, these results suggest that protein phosphatase-1-mediated MARCKS localization at the membrane is required for the fusion of embryonic muscle cells.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3