Mechanisms of CFTR regulation by syntaxin 1A and PKA

Author:

Chang Steven Y.1,Di Anke2,Naren Anjaparavanda P.3,Palfrey H. Clive2,Kirk Kevin L.3,Nelson Deborah J.2

Affiliation:

1. Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago Hospitals, 5841 S. Maryland Avenue, MC 6026, Chicago, IL 60637, USA

2. Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, 947 East 58th St, MC 0926, Chicago, IL 60637, USA

3. Department of Physiology and Biophysics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1918 University Blvd,MCLM 985, Birmingham, AL 35294, USA

Abstract

Activation of the chloride selective anion channel CFTR is stimulated by cAMP-dependent phosphorylation and is regulated by the target membrane t-SNARE syntaxin 1A. The mechanism by which SNARE proteins modulate CFTR in secretory epithelia is controversial. In addition, controversy exists as to whether PKA activates CFTR-mediated Cl- currents (ICFTR) by increasing the number of channels in the plasma membrane and/or by stimulating membrane-resident channels. SNARE proteins play a well known role in exocytosis and have recently been implicated in the regulation of ion channels; therefore this investigation sought to resolve two related issues:(a) is PKA activation or SNARE protein modulation of CFTR linked to changes in membrane turnover and (b) does syntaxin 1A modulate CFTR via direct effects on the gating of channels residing in the plasma membrane versus alterations in membrane traffic. Our data demonstrate that syntaxin 1A inhibits CFTR as a result of direct protein-protein interactions that decrease channel open probability (Po) and serves as a model for other SNARE protein-ion channel interactions. We also show that PKA activation can enhance membrane trafficking in some epithelial cell types, and this is independent from CFTR activation or syntaxin 1A association.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3