Affiliation:
1. These authors contributed equally to this work
2. Department of Cell Biology, University of Virginia Health System, School of Medicine, Charlottesville, VA 22908-0732, USA
Abstract
Recently, we reported that the minor regulated and constitutive-like pathways are the main source of resting secretion by parotid acinar cells. Using tissue lobules biosynthetically labeled with [35S]amino acids, we now show that discharge of the minor regulated pathway precedes granule exocytosis stimulated by isoproterenol (≥1 μM) or carbachol (2μM). Stimulation of the minor regulated pathway by 40 nM carbachol as well as altering its trafficking, either by adding brefeldin A or by incubating in K+-free medium, cause potentiation of amylase secretion stimulated by isoproterenol, suggesting that the minor regulated pathway contributes to the mechanism of potentiation. Both exocytosis of the minor regulated pathway and the potentiation-inducing treatments induce relocation of immunostained subapical puncta of the SNARE protein syntaxin 3 into the apical plasma membrane. Rab11 and possibly VAMP2 may be concentrated in the same relocating foci. These results suggest that the minor regulated pathway and granule exocytosis are functionally linked and that the minor regulated pathway has a second role beyond contributing to resting secretion — providing surface docking/fusion sites for granule exocytosis. In the current model of salivary protein export, discharge of the minor regulated pathway by eitherβ-adrenergic or cholinergic stimulation is an obligatory first step. Ensuing granule exocytosis is controlled mainly by β-adrenergic stimulation whereas cholinergic stimulation mainly regulates the number of surface sites where release occurs.
Publisher
The Company of Biologists
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献