Ca2+-induced changes in SNAREs and synaptotagmin I correlate with triggered exocytosis from chromaffin cells: insights gleaned into the signal transduction using trypsin and botulinum toxins

Author:

Lawrence Gary W.1,Dolly J. Oliver1

Affiliation:

1. Centre for Neurobiochemistry, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY,UK

Abstract

Ca2+-triggered catecholamine exocytosis from chromaffin cells involves SNAP-25, synaptobrevin and syntaxin (known as SNAREs). Synaptotagmin I has been implicated as the Ca2+-sensor because it binds Ca2+, and this enhances its binding to syntaxin, SNAP-25 and phospholipids in vitro. However, most of these interactions are only mediated by [Ca2+]i two orders of magnitude higher than that needed to elicit secretion. Thus, the Ca2+ sensitivities of synaptotagmin I and the other SNAREs were quantified in situ. Secretion elicited from permeabilised cells by μM Ca2+ was accompanied,with almost identical Ca2+ dependencies, by changes in synaptotagmin I, SNAP-25, syntaxin and synaptobrevin that rendered them less susceptible to trypsin. The majority of the trypsin-resistant SNAREs were not associated with SDS-resistant complexes. None of these proteins acquired trypsin resistance in cells rendered incompetent for exocytosis by run-down. Removal of nine C-terminal residues from SNAP-25 by botulinum toxin A reduced both exocytosis and the SNAREs' acquisition of trypsin resistance but did not alter the Ca2+ sensitivity, except for synaptotagmin I. Even after synaptobrevin had been cleaved by botulinum toxin B, all the other proteins still responded to Ca2+. These data support a model whereby Ca2+ is sensed, probably by synaptotagmin I, and the signal passed to syntaxin and SNAP-25 before they interact with synaptobrevin.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3