Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases

Author:

Aplin Andrew E.12,Hogan Brian P.1,Tomeu Jeannie1,Juliano R. L.1

Affiliation:

1. Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

2. Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA

Abstract

Cells decide whether to undergo processes, such as proliferation,differentiation and apoptosis, based upon the cues they receive from both circulating factors and integrin-mediated adhesion to the extracellular matrix. Integrins control the activation of the early signaling pathways. For example, growth factor activation of the ERK cascade is enhanced when cells are adherent. In addition, adhesion receptors oversee the cellular localization of critical signaling components. We have recently shown that ERK signaling to the nucleus is regulated by cell adhesion at the level of nucleocytoplasmic trafficking. Since the ERKs are only one class of MAP kinase, we extended these studies to include both JNK and p38 MAP kinases. We have rendered JNK and p38 activation in NIH 3T3 fibroblasts anchorage-independent either by treatment with anisomycin or by expression of upstream activators. Under conditions whereby JNK activation is anchorage-independent, we show that localization of JNK to the nucleus and JNK-mediated phosphorylation of c-Jun and Elk-1 is not altered by loss of adhesion. Likewise, the ability of activated p38 to accumulate in the nucleus was similar in suspended and adherent cells. Finally, we show that expression of a form of ERK, which is activated and resistant to nuclear export, reverses the adhesion-dependency of ERK phosphorylation of Elk-1. Thus, adhesion differentially regulates the nucleocytoplasmic distribution of MAP kinase members; ERK accumulation in the nucleus occurs more efficiently in adherent cells, whereas nuclear accumulation of active p38 and active JNK are unaffected by changes in adhesion.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3