Agonist-induced phasic and tonic responses in smooth muscle are mediated by InsP3

Author:

McCarron John G.1,Craig John W.1,Bradley Karen N.1,Muir Thomas C.1

Affiliation:

1. Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ,UK

Abstract

Many cellular functions are regulated by agonist-induced InsP3-evoked Ca2+ release from the internal store. In non-excitable cells, predominantly, the initial Ca2+release from the store by InsP3 is followed by a more sustained elevation in [Ca2+]i via store-operated Ca2+ channels as a consequence of depletion of the store. Here, in smooth muscle, we report that the initial transient increase in Ca2+, from the internal store, is followed by a sustained response also as a consequence of depletion of the store (by InsP3), but, influx occurs via voltage-dependent Ca2+ channels. Contractions were measured in pieces of whole distal colon and membrane currents and [Ca2+]i in single colonic myocytes. Carbachol evoked phasic and tonic contractions; only the latter were abolished in Ca2+-free solution. The tonic component was blocked by the voltage-dependent Ca2+ channel blocker nimodipine but not by the store-operated channel blocker SKF 96365. InsP3 receptor inhibition, with 2-APB, attenuated both the phasic and tonic components. InsP3 may regulate tonic contractions via sarcolemma Ca2+ entry. In single cells,depolarisation (to ∼-20 mV) elevated [Ca2+]i and activated spontaneous transient outward currents (STOCs). CCh suppressed STOCs, as did caffeine and InsP3. InsP3 receptor blockade by 2-APB or heparin prevented CCh suppression of STOCs; protein kinase inhibition by H-7 or PKC19-36did not. InsP3 suppressed STOCs by depleting a Ca2+ store accessed separately by the ryanodine receptor (RyR). Thus depletion of the store by RyR activators abolished the InsP3-evoked Ca2+ transient. RyR inhibition (by tetracaine) reduced only STOCs but not the InsP3transient. InsP3 contributes to both phasic and tonic contractions. In the former, muscarinic receptor-evoked InsP3 releases Ca2+ from an internal store accessed by both InsP3 and RyR. Depletion of this store by InsP3 alone suppresses STOCs, depolarises the sarcolemma and permits entry of Ca2+ to generate the tonic component. Therefore, by lowering the internal store Ca2+ content,InsP3 may generate a sustained smooth muscle contraction. These results provide a mechanism to account for phasic and tonic smooth muscle contraction following receptor activation.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3