The projection domain of MAP2b regulates microtubule protrusion and process formation in Sf9 cells

Author:

Bélanger Dave12,Farah Carole Abi12,Nguyen Minh Dang3,Lauzon Michel1,Cornibert Sylvie1,Leclerc Nicole1

Affiliation:

1. Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada, H3T 1J8

2. These authors contributed equally to the experimental work in this study

3. Montreal General Hospital Research Institute in Neuroscience, McGill University, Montréal, Canada, H3G 1A4

Abstract

The expression of microtubule-associated protein 2 (MAP2), developmentally regulated by alternative splicing, coincides with neurite outgrowth. MAP2 proteins contain a microtubule-binding domain (C-terminal) that promotes microtubule assembly and a poorly characterized domain, the projection domain(N-terminal), extending at the surface of microtubules. MAP2b differs from MAP2c by an additional sequence of 1372 amino acids in the projection domain. In this study, we examined the role of the projection domain in the protrusion of microtubules from the cell surface and the subsequent process formation in Sf9 cells. In this system, MAP2b has a lower capacity to induce process formation than MAP2c. To investigate the role of the projection domain in this event, we expressed truncated forms of MAP2b and MAP2c that have partial or complete deletion of their projection domain in Sf9 cells. Our results indicate that process formation is induced by the microtubule-binding domain of these MAP2 proteins and is regulated by their projection domain. Furthermore, the microtubule-binding activity of MAP2b and MAP2c truncated forms as well as the structural properties of the microtubule bundles induced by them do not seem to be the only determinants that control the protrusion of microtubules from the cell surface in Sf9 cells. Rather, our data suggest that microtubule protrusion and process formation are regulated by intramolecular interactions between the projection domain and its microtubule-binding domain in MAP2b.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3