Vein patterning by tissue-specific auxin transport

Author:

Govindaraju Priyanka1,Verna Carla1,Zhu Tongbo1,Scarpella Enrico1ORCID

Affiliation:

1. Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada

Abstract

Unlike in animals, in plants vein patterning does not rely on direct cell-cell interaction and cell migration; instead, it depends on the transport of the plant hormone auxin, which in turn depends on the activity of the PIN-FORMED1 (PIN1) auxin transporter. The current hypotheses of vein patterning by auxin transport propose that in the epidermis of the developing leaf PIN1-mediated auxin transport converges to peaks of auxin level. From those convergence points of epidermal PIN1 polarity, auxin would be transported in the inner tissues where it would give rise to major veins. Here we tested predictions of this hypothesis and found them unsupported: epidermal PIN1 expression is neither required nor sufficient for auxin-transport-dependent vein patterning, whereas inner-tissue PIN1 expression turns out to be both required and sufficient for auxin-transport-dependent vein patterning. Our results refute all vein patterning hypotheses based on auxin transport from the epidermis and suggest alternatives for future tests.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3