Deciphering function of the pulmonary arterial sphincters in loggerhead sea turtles (Caretta caretta)

Author:

García-Párraga Daniel1,Lorenzo Teresa1,Wang Tobias2,Ortiz Jose Luis3,Ortega Joaquín4,Crespo-Picazo Jose Luis1,Cortijo Julio3,Fahlman Andreas15ORCID

Affiliation:

1. Fundación Oceanografic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, 46005 Valencia, Spain

2. Zoophysiology, Department of Biosciences, Aarhus University, 8000 Aarhus C, Denmark

3. Dept of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain

4. Patología y Sanidad Animal, Departamento PASAPTA, Facultad de Veterinaria, Universidad CEU-Cardenal Herrera, CEU Universities, Moncada (Valencia), Spain

5. Department of Life Science, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA

Abstract

To provide new insight to the pathophysiological mechanisms underlying gas emboli (GE) in bycaught loggerhead sea turtles (Caretta caretta), the present study investigated the vasoactive characteristics of the pulmonary and systemic arteries, and the lung parenchyma (LP). Tissues were opportunistically excised from recently dead animals for in vitro studies of vasoactive responses to four different neurotransmitters: acetylcholine (ACh, parasympathetic), serotonin (5HT), epinephrine (Epi, sympathetic) and histamine. The significant amount of smooth muscle in the LP contracted in response to ACh, Epi and histamine. The intrapulmonary and systemic arteries contracted under both parasympathetic and sympathetic stimulation and when exposed to 5HT. However, proximal extrapulmonary arterial (PEPA) sections contracted in response to ACh and 5HT, while Epi caused relaxation. In sea turtles, the relaxation in the pulmonary artery was particularly pronounced at the level of the pulmonary artery sphincter (PASp) where the vessel wall was highly muscular. For comparison, we also studied tissue response in freshwater sliders turtles (Trachemys scripta elegans). Both PEPA and LP from freshwater sliders contracted in response to 5HT, ACh and conversely to sea turtles, also under Epi. We propose that in sea turtles the dive response (parasympathetic tone) constricts the PEPA, LP and PASp, causing a pulmonary shunt, limiting gas uptake at depth, which reduces the risk of GE during long and deep dives. Elevated sympathetic tone caused by forced submersion during entanglement with fishing gear increases the pulmonary blood flow causing an increase in N2 uptake, potentially leading to the formation of blood and tissue GE at the surface. These findings provide potential physiological and anatomical explanations on how these animals have evolved a cardiac shunt pattern that regulates gas exchange during deep and prolonged diving.

Funder

Office of Naval Research

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3