SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6

Author:

Skoge Renate Hvidsten1,Ziegler Mathias1ORCID

Affiliation:

1. Department of Molecular Biology, University of Bergen, Postbox 7803, 5020 Bergen, Norway

Abstract

Deacetylation of α-tubulin, lysine 40, is catalyzed by two enzymes, the NAD-dependent deacetylase SIRT2 and the NAD-independent deacetylase HDAC6, in apparently redundant reactions. In the present study, we tested whether these two enzymes might have distinguishable preferences for the deacetylation of different microtubule structures. Using various agents, we induced tubulin hyperacetylation and analyzed the ensuing formation of distinct microtubule structures. HDAC6 inhibition led to general hyperacetylation of the microtubule network throughout the cell, whereas hyperacetylation induced by SIRT2 inactivation was limited to perinuclear microtubules. Hyperacetylation of these perinuclear microtubules was undiminished following HDAC6 overexpression, while reactivation of SIRT2 restored the basal acetylation level and a normal microtubule network. On the other hand, SIRT2 and HDAC6 acted similarly on the morphologically different, hyperacetylated microtubule structures induced by taxol, MAP2c overexpression or hyperosmotic stress. These results indicate overlapping and distinct functions of HDAC6 and SIRT2. We propose that the differential activity of the two deacetylases, which target the same acetylated lysine residue, might be related to the recognition of specific structural contexts.

Funder

Norges Forskningsråd

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3