DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement

Author:

Malla Aushaq B.1,Rainsford Shannon R.1,Smith Zachary D.12ORCID,Lesch Bluma J.134ORCID

Affiliation:

1. Yale School of Medicine 1 Department of Genetics , , New Haven, CT 06510 , USA

2. Yale Stem Cell Center 2 , New Haven, CT 06510 , USA

3. Yale School of Medicine 3 Department of Obstetrics, Gynecology & Reproductive Sciences , , New Haven, CT 06510 , USA

4. Yale Cancer Center, Yale School of Medicine 4 , New Haven, CT 06510 , USA

Abstract

ABSTRACT Unique chromatin remodeling factors orchestrate dramatic changes in nuclear morphology during differentiation of the mature sperm head. A crucial step in this process is histone-to-protamine exchange, which must be executed correctly to avoid sperm DNA damage, embryonic lethality and male sterility. Here, we define an essential role for the histone methyltransferase DOT1L in the histone-to-protamine transition. We show that DOT1L is abundantly expressed in mouse meiotic and postmeiotic germ cells, and that methylation of histone H3 lysine 79 (H3K79), the modification catalyzed by DOT1L, is enriched in developing spermatids in the initial stages of histone replacement. Elongating spermatids lacking DOT1L fail to fully replace histones and exhibit aberrant protamine recruitment, resulting in deformed sperm heads and male sterility. Loss of DOT1L results in transcriptional dysregulation coinciding with the onset of histone replacement and affecting genes required for histone-to-protamine exchange. DOT1L also deposits H3K79me2 and promotes accumulation of elongating RNA Polymerase II at the testis-specific bromodomain gene Brdt. Together, our results indicate that DOT1L is an important mediator of transcription during spermatid differentiation and an indispensable regulator of male fertility.

Funder

National Institutes of Health

G. Harold and Leila Y. Mathers Foundation

Searle Scholars Program

Pew Charitable Trusts

Yale University

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3