Parallels between oncogene-driven cardiac hyperplasia and heart regeneration in zebrafish

Author:

Pfefferli Catherine1,Bonvin Marylène1,Grepper Dogan1,Robatel Steve1,König Désirée1,Lischer Heidi E. L.23,Bruggmann Rémy23,Jaźwińska Anna1ORCID

Affiliation:

1. University of Fribourg 1 Department of Biology , , Chemin du Musée 10, 1700 Fribourg , Switzerland

2. University of Bern 2 Interfaculty Bioinformatic Unit , , Baltzerstrasse 6, 3012 Bern , Switzerland

3. Swiss Institute of Bioinformatics (SIB) 3 , 1015 Lausanne , Switzerland

Abstract

ABSTRACT The human heart is poorly regenerative and cardiac tumors are extremely rare. Whether the adult zebrafish myocardium is responsive to oncogene overexpression and how this condition affects its intrinsic regenerative capacity remains unknown. Here, we have established a strategy of inducible and reversible expression of HRASG12V in zebrafish cardiomyocytes. This approach stimulated a hyperplastic cardiac enlargement within 16 days. The phenotype was suppressed by rapamycin-mediated inhibition of TOR signaling. As TOR signaling is also required for heart restoration after cryoinjury, we compared transcriptomes of hyperplastic and regenerating ventricles. Both conditions were associated with upregulation of cardiomyocyte dedifferentiation and proliferation factors, as well as with similar microenvironmental responses, such as deposition of nonfibrillar Collagen XII and recruitment of immune cells. Among the differentially expressed genes, many proteasome and cell-cycle regulators were upregulated only in oncogene-expressing hearts. Preconditioning of the heart with short-term oncogene expression accelerated cardiac regeneration after cryoinjury, revealing a beneficial synergism between both programs. Identification of the molecular bases underlying the interplay between detrimental hyperplasia and advantageous regeneration provides new insights into cardiac plasticity in adult zebrafish.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Novartis Foundation

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3