Basolateral ion transport mechanisms during fluid secretion byDrosophilaMalpighian tubules: Na+ recycling,Na+:K+:2Cl– cotransport and Cl– conductance

Author:

Ianowski Juan P.1,O'Donnell Michael J.1

Affiliation:

1. Department of Biology, McMaster University, 1280 Main Street West,Hamilton, Ontario, Canada, L8S 4K1

Abstract

SUMMARYMechanisms of ion transport during primary urine formation by the Malpighian tubule of Drosophila melanogaster were analyzed through measurements of fluid secretion rate, transepithelial ion flux, basolateral membrane potential (Vbl) and intracellular activities of K+ (aKi) and Cl–(aCli). Calculation of the electrochemical potentials for both ions permitted assessment of the possible contributions of K+ channels, Na+:K+:2Cl–cotransport, and K+:Cl– cotransport, to net transepithelial ion secretion across the basolateral membrane. The data show that passive movement of both K+ and Cl– from cell to bath is favoured across the basolateral membrane, indicating that both ions are actively transported into the cell. Contributions of basolateral K+ channels or K+:Cl– cotransporters to net transepithelial ion secretion can be ruled out. After prior exposure of tubules to ouabain, subsequent addition of bumetanide reduced fluid secretion rate, K+ flux and Na+ flux, indicating a role for a Na+:K+:2Cl– cotransporter in fluid secretion. Addition of the K+ channel blocker Ba2+ had no effect on aKi or aCli. Addition of Ba2+ unmasked a basolateral Cl– conductance and the hyperpolarization of Vbl in response to Ba2+ was Cl–-dependent. A new model for fluid secretion proposes that K+ and Cl– cross the basolateral membrane through a Na+-driven Na+:K+:2Cl–cotransporter and that most of the Na+ that enters the cells is returned to the bath through the Na+/K+-ATPase.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3