Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein

Author:

Kuratani S.C.1,Eichele G.1

Affiliation:

1. V. and M. McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030.

Abstract

The developing vertebrate hindbrain consists of segmental units known as rhombomeres. Hindbrain neuroectoderm expresses 3′ Hox 1 and 2 cluster genes in characteristic patterns whose anterior limit of expression coincides with rhombomere boundaries. One particular Hox gene, referred to as Ghox 2.9, is initially expressed throughout the hindbrain up to the anterior border of rhombomere 4 (r4). Later, Ghox 2.9 is strongly upregulated in r4 and Ghox 2.9 protein is found in all neuroectodermal cells of r4 and in the hyoid crest cell population derived from this rhombomere. Using a polyclonal antibody, Ghox 2.9 was immunolocalized after transplanting r4 within the hindbrain. Wherever r4 was transplanted, Ghox 2.9 expression was cell-autonomous, both in the neuroectoderm of the graft and in the hyoid crest cell population originating from the graft. In all vertebrates, rhombomeres and cranial nerves (nerves V, VII+VIII, IX, X) exhibit a stereotypic relationship: nerve V arises at the level of r2, nerve VII+VIII at r4 and nerves IX-X extend caudal to r6. To examine how rhombomere transplantation affects this pattern, operated embryos were stained with monoclonal antibodies E/C8 (for visualization of the PNS and of even-numbered rhombomeres) and HNK-1 (to detect crest cells and odd-numbered rhombomeres). Upon transplantation, rhombomeres did not change E/C8 or HNK-1 expression or their ability to produce crest cells. For example, transplanted r4 generated a lateral stream of crest cells irrespective of the site into which it was grafted. Moreover, later in development, ectopic r4 formed an additional cranial nerve root. In contrast, transplantation of r3 (lacks crest cells) into the region of r7 led to inhibition of nerve root formation in the host. These findings emphasize that in contrast to spinal nerve segmentation, which entirely depends on the pattern of somites, cranial nerve patterning is brought about by factors intrinsic to rhombomeres and to the attached neural crest cell populations. The patterns of the neuroectoderm and of the PNS are specified early in hindbrain development and cannot be influenced by tissue transplantation. The observed cell-autonomous expression of Ghox 2.9 (and possibly also of other Hox genes) provides further evidence for the view that Hox gene expression underlies, at least in part, the segmental specification within the hindbrain neuroectoderm.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference77 articles.

1. Pluripotentiality of the 2-day-old avian germinative neuroepithelium.;Alvarado-Mallart;Dev. Biol.,1990

2. The early development of the human brain.;Bartelmez;Contr. Embryol.,1962

3. Etude sur les replis medullaires du poulet.;Beraneck;Rec. Zool Suisse.,1884

4. Effects of mesodermal tissues on avian neural crest cell migration.;Bronner-Fraser;Dev. Biol.,1991

5. Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene;Chisaka;Hox-1. 6. Nature,1992

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3