Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules

Author:

Whitlock K.E.1

Affiliation:

1. Department of Zoology, University of Washington, Seattle 98195.

Abstract

The neurons of the sensory receptors on the wing of Drosophila melanogaster have highly characteristic axon projections in the central nervous system (CNS). The morphology of these projections was studied in flies bearing mutations that affect cell surface molecules thought to be important in axon guidance. The animals used were mutant for the fasciclinI (fasI), fasciclinII (fasII), fasciclinIII (fasIII) and neurally altered carbohydrate (nac) genes. Axon populations were visualized by staining with DiI and light-reacting the dye with diaminobenzidine to yield permanent preparations. The fasI, fasII and fasIII mutants as well as the nac mutant display altered axonal trajectories in the CNS. One phenotype seen in fasII mutants and in animals mutant for both fasI and fasIII was extra branching within the axon projection pattern. A second phenotype observed was a reduction or complete loss of one of the tracts, apparently due to the axons shifting to a neighboring tract. This was seen in the most extreme form in nac mutants and to a lesser degree in fasIII mutants. To determine if the mutations discussed here affected axon guidance, wing discs were analyzed using the antibody 22C10 to label sensory neurons in the wing during metamorphosis. Both misrouting of axons and the appearance of ectopic neurons in the wing were observed. In the fasI:fasIII, the fasII and the nac mutants, there was misrouting of sensory axons in the developing wing. In addition, the fasII and nac mutants displayed ectopic sensory neurons in the wing. This implies that the cell surface molecules missing (fasciclins) or modified (by the nac gene product), in these mutants may play a role in both neurogenesis and axon guidance.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3