Paternally inherited H3K27me3 affects chromatin accessibility in mouse embryos produced by round spermatid injection

Author:

Sakamoto Mizuki1,Ito Daiyu1,Inoue Rei1,Wakayama Sayaka2,Kikuchi Yasuyuki1,Yang Li1,Hayashi Erika1,Emura Rina1,Shiura Hirosuke1ORCID,Kohda Takashi1,Namekawa Satoshi H.3ORCID,Ishiuchi Takashi1ORCID,Wakayama Teruhiko2ORCID,Ooga Masatoshi1ORCID

Affiliation:

1. University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan

2. Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan

3. University of California Davis 3 Department of Microbiology and Molecular Genetics , , Davis, CA 95616 , USA

Abstract

ABSTRACT Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Asada Science Foundation

Canon Foundation

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3