IRS-1 increases TAZ expression and promotes osteogenic differentiation in rat bone marrow mesenchymal stem cells

Author:

Wang Na12,Xue Peng12,Li Ziyi12,Li Yukun12ORCID

Affiliation:

1. Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, China

2. Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, China

Abstract

ABSTRACT Whether insulin receptor substrate 1 (IRS-1) inhibits or promotes the osteogenic proliferation and differentiation in vitro remains controversial. Transcriptional co-activator with PDZ-binding motif (TAZ) plays a vital role in the osteogenesis of bone marrow mesenchymal stem cells (BMSCs), and strongly activates the expression of the osteogenic differentiation markers. In this study, we found that IRS-1 and TAZ followed similar increasing expression patterns at the early stage of osteogenic differentiation. Knocking down IRS-1 decreased the TAZ, RUNX2 and OCN expression, and overexpressing IRS induced the upregulation of the TAZ, RUNX2 and OCN expression. Furthermore, our results showed that it was LY294002 (the PI3K-Akt inhibitor), other than UO126 (the MEK-ERK inhibitor), that inhibited the IRS-1 induced upregulation of TAZ expression. Additionally, SiTAZ blocked the cell proliferation in G1 during the osteogenic differentiation of BMSCs. Taken together, we provided evidence to demonstrate that IRS-1 gene modification facilitates the osteogenic differentiation of rat BMSCs by increasing TAZ expression through the PI3K-Akt signaling pathway. This article has an associated First Person interview with the first author of the paper.

Funder

Natural Science Foundation of Hebei Province

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3