Affiliation:
1. Department of Biology, Queen's University, Biosciences Complex,Kingston, ON, K7L 3N6, Canada
Abstract
SUMMARYThe mechanisms by which different life histories affect neural circuits are largely unknown. We show that the thermosensitivity and thermotolerance of neural circuit operation are affected in a complex dynamic fashion by photoperiod, prior heat experience and the sex of the animal. We compared thermosensitivity and thermotolerance of ventilatory motor pattern generation in locusts reared under two photoperiods (12:12 and 16:8; i.e. 12 h:12 h and 16 h:8 h L:D, respectively) before and after heat shock pre-treatment (HS: 3 h, 45°C) in order to determine the effect of daylength on properties of neural function. We monitored central pattern generator (CPG) output electromyographically from muscle 161 in the second abdominal segment during ramped increases in temperature and also measured the time taken for the circuit to fail at high temperatures and the time taken to recover on return to room temperature. There were effects of photoperiod, heat pre-treatment and the sex of the animal on ventilatory rate, time-to-failure and time-to-recovery. The ventilatory motor pattern of 16:8 and 12:12 locusts responded differently to increasing and maintained high temperature stress in both control and heat shocked locusts. We found that 12:12 locusts were generally more robust than 16:8 locusts: they lived longer, they showed greater tolerance to high temperatures, and they recovered more quickly from temperature-induced circuit failure. A faster ventilatory rate in 12:12 animals at high temperatures may have accelerated evaporative cooling to mediate improved temperature tolerance.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献