Modular structure of sodium-coupled bicarbonate transporters

Author:

Boron Walter F.1,Chen Liming1,Parker Mark D.1

Affiliation:

1. Department of Physiology and Biophysics, Case Western Reserve University Medical School, 10900 Euclid Avenue, Cleveland, OH 44106, USA

Abstract

SUMMARYMammalian genomes contain 10 SLC4 genes that, between them, encode three Cl–HCO3 exchangers, five Na+-coupled HCO3 transporters (NCBTs), one reported borate transporter, and what is reported to be a fourth Cl–HCO3 exchanger. The NCBTs are expressed throughout the body and play important roles in maintaining intracellular and whole-body pH, as well as contributing to transepithelial transport processes. The importance of NCBTs is underscored by the genetic association of dysfunctional NCBT genes with blindness, deafness, epilepsy,hypertension and metal retardation. Key to understanding the action and regulation of NCBTs is an appreciation of the diversity of NCBT gene products. The transmembrane domains of human NCBT paralogs are 50–84% identical to each other at the amino acid level, and are capable of a diverse range of actions, including electrogenic Na/HCO3 cotransport (i.e. NBCe1 and NBCe2) and electroneutral Na/HCO3 cotransport (i.e. NBCn1 and NBCn2), as well as Na+-dependent Cl–HCO3 exchange(i.e. NDCBE). Furthermore, by the use of alternative promoters and alternative-splicing events, individual SLC4 genes have the potential to generate multiple splice variants (as many as 16 in the case of NBCn1), each of which could have unique temporal and spatial patterns of distribution, unitary transporter activity (i.e. flux mediated by one molecule), array of protein-binding partners, and complement of regulatory stimuli. In the first section of this review, we summarize our present knowledge of the function and distribution of mammalian NCBTs and their multiple variants. In the second section of this review we consider the molecular consequences of NCBT variation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3