Patterns of tropomyosin and troponin-T isoform expression in jaw-closing muscles of mammals and reptiles that express masticatory myosin

Author:

Bicer Sabahattin1,Patel Radhika J.1,Williams Joseph B.2,Reiser Peter J.1

Affiliation:

1. Department of Oral Biology, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA

2. Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA

Abstract

SUMMARY We recently reported that masticatory (‘superfast’) myosin is expressed in jaw-closing muscles of some rodent species. Most mammalian limb muscle fibers express tropomyosin-β (Tm-β), along with fast-type or slow-type tropomyosin-β (Tm-β), but jaw-closing muscle fibers in members of Carnivora express a unique isoform of Tm [Tm-masticatory (Tm-M)] and little or no Tm-β. The goal of this study was to determine patterns of Tm and troponin-T (TnT) isoform expression in the jaw-closing muscles of rodents and other vertebrate species that express masticatory myosin, and compare the results to those from members of Carnivora. Comparisons of electrophoretic mobility, immunoblotting and mass spectrometry were used to probe the Tm and fast-type TnT isoform composition of jaw-closing and limb muscles of six species of Carnivora, eight species of Rodentia, five species of Marsupialia, big brown bat, long-tailed macaque and six species of Reptilia. Extensive heterogeneity exists in Tm and TnT isoform expression in jaw-closing muscles between phylogenetic groups, but there are fairly consistent patterns within each group. We propose that the differences in Tm and TnT isoform expression patterns between phylogenetic groups, which share the expression of masticatory myosin, may impart fundamental differences in thin-filament-mediated muscle activation to accommodate markedly different feeding styles that may require high force generation in some species (e.g. many members of Carnivora) and high speed in others (e.g. Rodentia).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3