Cell-cycle-specific induction of quiescence achieved by limited inhibition of protein synthesis: counteractive effect of addition of purified growth factors

Author:

Larsson O.,Zetterberg A.,Engstrom W.

Abstract

We have previously shown that Swiss 3T3 cells located in the first part of G1 (post-mitotic G1 cells younger than 4.0 h or G1pm cells) were arrested after 9–10 h in the cell cycle by a short (1-8 h) exposure to serum-free medium or by a short (2-4 h) exposure to low doses of the protein synthesis inhibitor cycloheximide (CH). Kinetic data indicate that such G1pm cells rapidly return to G0 during this brief treatment and thereafter require a preparatory period of 8 h before continuing to G1. Cells older than 4 h, i.e. cells in mid or late G1 are already committed to DNA synthesis (presynthesis or G1ps cells). These cells as well as S and G2 cells were consequently unaffected by the brief serum starvation or the brief treatment with cycloheximide. In the present paper we show that the 10-h intermitotic delay that follows a 1–2 h exposure to serum-free medium can be completely counteracted by the presence of any one of the purified growth factors, epidermal growth factor (EGF), insulin or platelet-derived growth factor (PDGF). In contrast, the intermitotic delay following a longer exposure (8 h) to serum-free medium could no longer be counteracted by EGF or insulin. However, PDGF was still active in this respect. Most interestingly, the 12 h gross intermitotic delay induced by a 4h exposure to CH could be efficiently counteracted by EGF, PDGF or insulin. However, this effect on CH-treated cells could be counteracted by the growth factor only in the presence of 10% serum. This indicates the existence of a cooperative effect between PDGF, EGF or insulin and an unidentified serum factor. The effects on the cell cycle time of brief serum starvation and exposure to CH were compared with the effects on rate of protein synthesis and degradation. Although the effects of serum starvation on protein synthesis and degradation were found to be partially normalized by growth factors, we suggest that growth factors prevent cells from leaving the cell cycle by another mechanism and not merely by affecting the level of overall protein accumulation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3