Cytoskeletal reorganization and plasma membrane fusion in conjugating Tetrahymena

Author:

Wolfe J.

Abstract

The conjugation junction of Tetrahymena is the specialized site where plasma membrane fusion occurs between two cells of complementary mating types. The junction is constructed through a series of cooperative interactions and morphogenetic steps. A contact-mediated interaction between free-swimming, sexually mature and mating-competent cells of two complementary mating types induces a morphological transformation of the anterior tips. Cells then join in pairs aligned by the apposition of their modified tips. Thin sections show that the plasma membranes of the tips are separated by approximately 500 A of extracellular space, in which some strands of matrix material can be identified. The cytoplasmic face of the membrane is in contact with a junction-specific thick layer of electron-dense material. At hundreds of independent sites in this junction plasma membranes fuse in a limited manner, thereby establishing hundreds of separate membrane-ensheathed cytoplasmic channels that connect the two cells. At the same locations the thick submembrane layer is interrupted. Consequently, the junction appears to be a structure that is perforated with hundreds of pores. This study poses the question of whether the junction's submembrane layer is, or includes, a skeletal element. Cells were extracted with the non-ionic detergent Triton X-100 under conditions that yield cytoskeletal frameworks (CFs) that maintain the morphological integrity of the cells. The CFs include chromatin and also cortical structures such as microtubule bands, basal bodies, ciliary axonemes, kinetodesmal fibres and fibrillar epiplasm. CFs of conjugant pairs are also paired, indicating that the junction contains a skeletal element that is responsible for integrating the individual CFs into a higher-order complex. At the ultrastructural level the skeletal structure of the junction includes membrane lamina and a submembrane scaffold, residues of the plasma membrane and thick submembrane layer, respectively, both of which are interrupted at the pores. However, the two separate scaffolds are joined at the rims of the pores. This provides a means by which the separate CFs become integrated. On the basis of images of junctional CFs, which show interruptions of the scaffold without concomitant membrane fusion, but where laminae are pressed close together, a specific model of membrane fusion is proposed. According to this model, the submembrane skeletal scaffold regulates membrane fusion by limiting its occurrence, and the extent of its occurrence.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3