Contrasting strategies of osmotic and ionic regulation in freshwater crabs and shrimps: gene expression of gill ion transporters

Author:

Mantovani Milene1ORCID,McNamara John Campbell1ORCID

Affiliation:

1. Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901 SP, Brazil

Abstract

Owing to their extraordinary niche diversity, the Crustacea are ideal for comprehending the evolution of osmoregulation. The processes that effect systemic hydro-electrolytic homeostasis maintain hemolymph ionic composition via membrane transporters located in highly specialized gill ionocytes. We evaluated physiological and molecular hyper- and hypo-osmoregulatory mechanisms in two phylogenetically distant, freshwater crustaceans, the crab Dilocarcinus pagei and the shrimp Macrobrachium jelskii, when osmotically challenged for up to 10 days. When in distilled water, D. pagei survived without mortality, hemolymph osmolality and [Cl−] increased briefly, stabilizing at initial values, while [Na+] decreased continually. Gill V(H+)-ATPase, Na+/K+-ATPase and Na+/K+/2Cl− gene expressions were unchanged. In M. jelskii, hemolymph osmolality, [Cl−] and [Na+] decreased continually for 12 h, the shrimps surviving only around 15 to 24 h exposure. Gill transporter gene expressions increased 2- to 5-fold. After 10-days exposure to brackish water (25 ‰S), D. pagei was isosmotic, iso-chloremic and iso-natriuremic. Gill V(H+)-ATPase expression decreased while Na+/K+-ATPase and Na+/K+/2Cl− expressions were unchanged. In M. jelskii (20 ‰S), hemolymph was hypo-regulated, particularly [Cl−]. Transporter expressions initially increased 3- to 12-fold, declining to control values. Gill V(H+)-ATPase expression underlies the ability of D. pagei to survive in fresh water while V(H+)- and Na+/K+-ATPase and Na+/K+/2Cl− expressions enable M. jelskii to confront hyper/hypo-osmotic challenge. These findings reveal divergent responses in two unrelated crustaceans inhabiting a similar osmotic niche. While D. pagei does not secrete salt, tolerating elevated cellular isosmoticity, M. jelskii exhibits clear hypo-osmoregulatory ability. Each species has evolved distinct strategies at the transcriptional and systemic levels during its adaptation to fresh water.

Funder

Fundaçao de Amparo á Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3