No apparent ecological trend to the flight-initiating jump performance of five bat species

Author:

Gardiner James D.1,Nudds Robert L.1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK

Abstract

SUMMARY The jump performance of five insectivorous bat species (Miniopterus schreibersii, Myotis blythii, Myotis capaccinii, Myotis myotis and Rhinolophus blasii) was filmed using a high-speed camera. All study bats jumped using a similar technique, with the wing musculature providing the force. The bats jumped off the wrist joint of their wings, typically with their feet already off the ground. Contrary to expectations, jump performance did not correlate with ecology and was instead strongly determined by body size. In general, the larger bats produced more jump force, left the ground at higher speeds and jumped higher than the smaller bats. The differences in force production disappeared when the data were corrected for body size, with the exception of Myotis capaccinii, which produced significantly less force. Scaling of jump performance with body size measured here was compared against two existing muscle performance scaling models. The model suggesting that muscle contraction velocity is proportional to muscle length was better supported than that based on muscle cross-sectional area. Both models, however, failed to accurately predict the scaling of jump forces, with the slope of the relationship being significantly steeper than predicted, highlighting the need for further investigations of vertebrate muscle performance scaling. The results of this study indicate that a bat's jumping ability is a secondary locomotor ability that uses the strongly selected-for flight apparatus with no apparent ecological trend present, i.e. flight so dominates bat locomotor morphology that other locomotor abilities tend to be derivative.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-Fingered Bat Myotis capaccinii (Bonaparte, 1837);Handbook of the Mammals of Europe;2023

2. Blasius’s Horseshoe Bat Rhinolophus blasii Peters, 1867;Handbook of the Mammals of Europe;2023

3. Blasius’s Horseshoe Bat Rhinolophus blasii Peters, 1867;Handbook of the Mammals of Europe;2022

4. Long-Fingered Bat Myotis capaccinii (Bonaparte, 1837);Handbook of the Mammals of Europe;2020

5. Terrestrial Behavior and Trackway Morphology of Neotropical Bats;Acta Chiropterologica;2018-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3