Microstome–macrostome transformation in the polymorphic ciliateTetrahymena voraxleads to mechanosensitivity associated with prey-capture behaviour

Author:

Grønlien Heidi K.12,Hagen Bjarne1,Sand Olav1

Affiliation:

1. Department of Molecular Biosciences, University of Oslo, Blindern, N-0316 Oslo, Norway

2. Faculty of Health and Social Studies, Østfold University College, N-1757 Halden, Norway

Abstract

SUMMARYCiliates feed by phagocytosis. Some ciliate species, such as Tetrahymena vorax, are polymorphic, a strategy that provides more flexible food utilization. Cells of the microstomal morph of T. vorax feed on bacteria, organic particles and organic solutes in a non-selective manner, whereas macrostome cells are predators that consume specific prey ciliates. In the present study, we investigated a possible correlation between phagocytosis and mechanosensitivity in macrostome T. vorax. Microstome cells seem to be insensitive to mechanical stimulation whereas macrostome cells depolarise in response to mechanical stimulation of the anterior part of the cell. The amplitude of the receptor potential induced by either a prey ciliate or a 5 μm push by a glass needle was sufficient to elicit a regenerative Ca2+ spike. The difference in mechanosensitivity of the two forms correlates with the swimming behaviour when hitting an obstacle; microstome cells swim alongside the obstacle whereas macrostome cells swim backwards, turn and resume forward swimming. Macrostome cells prevented from backward swimming and the subsequent turn failed to capture prey cells in their pouch. Macrostome cells consumed heterospecific prey ciliates preferentially over conspecific microstome cells. This selectivity is not due to electrical membrane responses elicited by physical contact. Both microstome and macrostome cells accumulated in an area containing putative substances released from heterospecific prey ciliates, but the substances did not elicit any electrophysiological membrane responses. We conclude that the mechanosensitivity of macrostome cells is associated with the prey-capture behaviour, whereas the selective phagocytosis is probably due to chemo-attraction to heterospecific prey ciliates.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

1. Membrane trafficking and processing in Paramecium;Allen;Int. Rev. Cytol.,2000

2. Induction of the macrostomal form of Tetrahymena vorax by a synthetic ferrous iron chelate of hypoxanthine and uracil;Arauz;Trans. Illinois Acad. Sci.,2009

3. Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress;Asparuhova;Scand. J. Med. Sci. Sports,2009

4. Phenotypic plasticity, intraguild predation and anti-cannibal defences in an enigmatic polymorphic ciliate;Banerji;Funct. Ecol.,2009

5. Membrane currents in the microstome and macrostome forms of Tetrahymena vorax;Bruskeland;Acta Physiol. Scand.,1999

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3