Regional specification within the mesoderm of early embryos of Xenopus laevis

Author:

Dale L.1,Slack J.M.1

Affiliation:

1. Imperial Cancer Research Fund, Developmental Biology Unit, University of Oxford, UK.

Abstract

We have further analysed the roles of mesoderm induction and dorsalization in the formation of a regionally specified mesoderm in early embryos of Xenopus laevis. First, we have examined the regional specificity of mesoderm induction by isolating single blastomeres from the vegetalmost tier of the 32-cell embryo and combining each with a lineage-labelled (FDA) animal blastomere tier. Whereas dorsovegetal (D1) blastomeres induce ‘dorsal-type’ mesoderm (notochord and muscle), laterovegetal and ventrovegetal blastomeres (D2–4) induce either ‘intermediate-type’ (muscle, mesothelium, mesenchyme and blood) or ‘ventral-type’ (mesothelium, mesenchyme and blood) mesoderm. No significant difference in inductive specificity between blastomeres D2, 3 and 4 could be detected. We also show that laterovegetal and ventrovegetal blastomeres from early cleavage stages can have a dorsal inductive potency partially activated by operative procedures, resulting in the induction of intermediate-type mesoderm. Second, we have determined the state of specification of ventral blastomeres by isolating and culturing them in vitro between the 4-cell stage and the early gastrula stage. The majority of isolates from the ventral half of the embryo gave extreme ventral types of differentiation at all stages tested. Although a minority of cases formed intermediate-type and dorsal-type mesoderms we believe these to result from either errors in our assessment of the prospective DV axis or from an enhancement, provoked by microsurgery, of some dorsal inductive specificity. The results of induction and isolation experiments suggest that only two states of specification exist in the mesoderm of the pregastrula embryo, a dorsal type and a ventral type. Finally we have made a comprehensive series of combinations between different regions of the marginal zone using FDA to distinguish the components. We show that, in combination with dorsal-type mesoderm, ventral-type mesoderm becomes dorsalized to the level of intermediate-type mesoderm. Dorsal-type mesoderm is not ventralized in these combinations. Dorsalizing activity is confined to a restricted sector of the dorsal marginal zone, it is wider than the prospective notochord and seems to be graded from a high point at the dorsal midline. The results of these experiments strengthen the case for the three-signal model proposed previously, i.e. dorsal and ventral mesoderm inductions followed by dorsalization, as the simplest explanation capable of accounting for regional specification within the mesoderm of early Xenopus embryos.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spemann-Mangold organizer and mesoderm induction;Cells & Development;2024-06

2. Organizing activities of axial mesoderm;Current Topics in Developmental Biology;2024

3. Identification and characterization of human hematopoietic mesoderm;Science China Life Sciences;2023-10-16

4. Use of Frogs as a Model to Study the Etiology of HLHS;Journal of Cardiovascular Development and Disease;2023-01-29

5. The organizer: What it meant, and still means, to developmental biology;Current Topics in Developmental Biology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3