Formation of primary and secondary myotubes in rat lumbrical muscles

Author:

Ross J.J.1,Duxson M.J.1,Harris A.J.1

Affiliation:

1. Neuroscience Centre, University of Otago Medical School, Dunedin, New Zealand.

Abstract

Numbers of myoblasts, primary myotubes and secondary myotubes in developing rat embryo hindlimb IVth lumbrical muscles were counted at daily intervals up until the time of birth, using electron microscopy. Motoneurone death at the spinal cord level supplying the lumbricals was assessed by counting axons in the 4th lumbar ventral root. Death of the motoneurones that supply the intrinsic muscles of the hindfoot was monitored by comparing the timecourse of development of total muscle choline acetyltransferase activity in control embryos with that in embryos where motoneurone death was inhibited by chronic paralysis with TTX, and by counting axons in the mixed nerve trunks at the level of the ankle at daily intervals. Condensations of undifferentiated cells marking the site of formation of the muscle were seen on embryonic day 15 (E15). Primary myotubes began to appear on E16 and reached a stable number (102 +/− 4) by E17. Secondary myotubes first appeared two days later, on E19, and numbered 280 at the time of birth (E22). The adult total of about 1000 muscle fibres, derived from both primary and secondary myotubes, was reached at postnatal day 7 (PN7) so considerable generation of secondary myotubes occurred after birth. There was a linear correlation between the number of undifferentiated mononucleate cells in a muscle and the rate of formation of secondary myotubes. The major period of motoneurone death in lumbar spinal cord was during E16-E17, when axon numbers in the L4 ventral root fell from 12,000 to 4000, but a discontinuity in the curve of muscle ChAT activity versus time indicated that death in the lumbrical motor pool occurred during E17-E19, after all primary myotubes had formed and before generation of secondary myotubes began. We suggest that motoneurone death, by regulating the final size of the motoneurone pool, regulates the ratio of secondary to primary myotube numbers in a muscle.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3