The morphogenesis of the chick primary corneal stroma. I. New observations on collagen organization in vivo help explain stromal deposition and growth

Author:

Bard J.B.1,Bansal M.K.1

Affiliation:

1. MRC Clinical & Population Cytogenetics Unit, Western General Hospital, Edinburgh, UK.

Abstract

The primary stroma of the avian cornea contains collagen fibrils in orthogonal array. While investigating the processes underlying its morphogenesis, we have found that stromal organization is not as expected in three important respects. First, the fibrils are not uniform: those near the epithelium (newly laid down) have a maximum diameter of about 20 nm (mean: 17.7 nm), while those near the endothelium (laid down for approx. 40 h) have diameters up to 40 nm (mean: 22.8 nm). Fibrils thus grow rapidly to 20 nm and then continue to enlarge slowly, presumably by diffusion of collagen molecules from the epithelium. Second, the collagen, although orthogonally organized, does not contain layers of parallel fibrils. Instead, SEM observation shows that only a few fibrils lie in a parallel array before this short-range order is broken by orthogonal fibrils in the same plane. Furthermore, fibrils in corneas that had been freeze dried but not critical-point dried for SEM were widely spaced and the intervening gaps were filled by an extensive matrix that was probably composed of the proteoglycans known to be in the stroma. Third, we have shown experimentally that the stromal undulations seen in sections are not present in vivo but are shrinkage artifacts: the less corneas were shrunk for SEM preparation, the less pronounced were the stromal undulations. We also noted that, even after the distortions required for the stroma to undulate, the constituent fibrils remained orthogonally organized. These results give insight into the mechanisms underlying stromal morphogenesis and growth. The observations on the growth of collagen fibrils and on collagen organization show that stromal deposition is a more stochastic process than previously thought and, hence, provides support for the view that a complex self-assembly mechanism underlies both fibrillogenesis and the generation of orthogonal organization. The experiments on, and the analysis of, stromal folding show that fibrils slide over one another as undulations form, with the extensive matrix of hydrated proteoglycans being the likely lubricant. This fluidity of the stromal components probably explains how growth can occur without the structure being distorted.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3