Adenoviral vector saturates Akt pro-survival signaling and blocks insulin-mediated rescue of tumor-necrosis-factor-induced apoptosis

Author:

Miller-Jensen Kathryn12,Janes Kevin A.3,Wong Yun-Ling2,Griffith Linda G.13,Lauffenburger Douglas A.1234

Affiliation:

1. Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3. Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

4. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Recombinant adenoviruses are used extensively as delivery vectors in clinical gene therapy and in molecular biology, but little is known about how the viral carrier itself contributes to cellular responses. Here we show that infection with an E1/E3-deleted adenoviral vector (Adv) sensitizes human epithelial cells to tumor necrosis factor (TNF)-induced apoptosis. To explore the mechanism of Adv-mediated sensitization, we measured activity time courses for three protein kinases (MK2, IKK and JNK1) centrally involved in the TNF-receptor signaling network, as well as two kinases (Akt and ERK) activated by growth factors. Both the pro-apoptotic signal MK2 and the anti-apoptotic signal Akt were upregulated when Adv-infected cells were stimulated with TNF, and MK2 and Akt each contributed significantly to TNF-induced cell fate. Surprisingly, further activation of Akt in Adv-infected cells via insulin treatment did not significantly reduce apoptosis or MK2 activity. We show that the ineffectiveness of insulin-mediated anti-apoptotic signaling through Akt is due to saturation of Akt-effector substrate phosphorylation in Adv-infected cells. Normalizing Akt signaling relative to its Adv-induced baseline activity identified a global dose-response curve that relates Akt signaling to cellular survival. Thus, the background Akt activity induced by Adv limits the transmission of anti-apoptotic signals in response to further cytokine or growth-factor stimulation. The phenotypic and intracellular synergy between Adv and TNF may have implications for interpreting cellular responses in gene-therapy and laboratory applications.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3