Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation
Author:
Gilchrist Robert B.1, Ritter Lesley J.1, Myllymaa Samu2, Kaivo-Oja Noora2, Dragovic Rebecca A.1, Hickey Theresa E.1, Ritvos Olli2, Mottershead David G.2
Affiliation:
1. Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, The Queen Elizabeth Hospital, University of Adelaide, Australia 2. Programme for Developmental and Reproductive Biology, Biomedicum Helsinki, and Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland
Abstract
Oocytes regulate follicle growth by secreting paracrine growth factors that act on neighbouring granulosa cells (GCs). Those factors identified to date are mainly members of the transforming growth factor-β (TGFβ) superfamily, but little is known about which specific receptor/signalling system(s) they employ. This study was conducted to determine the requisite pathways utilised by oocytes to promote GC proliferation. We used an established oocyte-secreted mitogen bioassay, where denuded mouse oocytes are co-cultured with mural GCs. Oocytes, growth differentiation factor-9 (GDF9), TGFβ1 and activin-A all promoted GC DNA synthesis, but bone-morphogenetic protein 6 (BMP6) did not. Subsequently, we tested the capacity of various TGFβ superfamily receptor ectodomains (ECD) to neutralise oocyte- or specific growth factor-stimulated GC proliferation. The BMP type-II receptor (BMPR-II) ECD antagonised oocyte and GDF9 bioactivity dose-dependently, but had no or minimal effect on TGFβ1 and activin-A bioactivity, demonstrating its specificity. The TGFβR-II, activinR-IIA and activinR-IIB ECDs all failed to neutralise oocyte- or GDF9-stimulated GC DNA synthesis, whereas they did antagonise the activity of their respective native ligands. An activin receptor-like kinase (ALK) 4/5/7 inhibitor, SB431542, also antagonised both oocyte and GDF9 bioactivity in a dose-dependent manner. Consistent with these findings, oocytes, GDF9 and TGFβ1 all activated SMAD2/3 reporter constructs in transfected GC, and led to phosphorylation of SMAD2 proteins in treated cells. Surprisingly, oocytes did not activate the SMAD1/5/8 pathway in transfected GCs although exogenous BMP6 did. This study indicates that oocyte paracrine factors primarily utilise a similar signalling pathway first identified for GDF9 that employs an unusual combination of TGFβ superfamily receptors, the BMPR-II and a SMAD2/3 stimulatory ALK (4, 5 or 7), for transmitting their mitogenic actions in GC. This cell-signalling pathway may also have relevance in the hypothalamic-pituitary axis and in germ-somatic cell interactions in the testis.
Publisher
The Company of Biologists
Reference49 articles.
1. Aaltonen, J., Laitinen, M. P., Vuojolainen, K., Jaatinen, R., Horelli-Kuitunen, N., Seppa, L., Louhio, H., Tuuri, T., Sjoberg, J., Butzow, R. et al. (1999). Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J. Clin. Endocrinol. Metab.84, 2744-2750. 2. Buccione, R., Vanderhyden, B. C., Caron, P. J. and Eppig, J. J. (1990). FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev. Biol.138, 16-25. 3. Canipari, R., Epifano, O., Siracusa, G. and Salustri, A. (1995). Mouse oocytes inhibit plasminogen activator production by ovarian cumulus and granulosa cells. Dev. Biol.167, 371-378. 4. Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N. and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature383, 531-535. 5. Dragovic, R. A., Ritter, L. J., Schulz, S. J., Amato, F., Armstrong, D. T. and Gilchrist, R. B. (2005). Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology146, 2798-2806.
Cited by
189 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|