Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner

Author:

Hirata Hiroaki12,Tatsumi Hitoshi3,Sokabe Masahiro123

Affiliation:

1. Cell Mechanosensing Project, ICORP/SORST, Japan Science and Technology Agency, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan

2. Department of Molecular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan

3. Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan

Abstract

We examined the effects of mechanical forces on actin polymerization at focal adhesions (FAs). Actin polymerization at FAs was assessed by introducing fluorescence-labeled actin molecules into permeabilized fibroblasts cultured on fibronectin. When cell contractility was inhibited by the myosin-II inhibitor blebbistatin, actin polymerization at FAs was diminished, whereas α5β1 integrin remained accumulated at FAs. This suggests that actin polymerization at FAs depends on mechanical forces. To examine the action of mechanical forces more directly, the blebbistatin-treated cells were subjected to a sustained uniaxial stretch, which induced actin polymerization at FAs. These results demonstrate the novel role of mechanical forces in inducing actin polymerization at FAs. To reveal the molecular mechanism underlying the force-induced actin polymerization at FAs, we examined the distribution of zyxin, a postulated actin-regulatory protein. Actin-polymerizing activity was strong at zyxin-rich FAs. Accumulation of zyxin at FAs was diminished by blebbistatin, whereas uniaxial stretching of the cells induced zyxin accumulation. Displacing endogenous zyxin from FAs by expressing the FA-targeting region of zyxin decreased the force-induced actin polymerization at FAs. These results suggest that zyxin is involved in mechanical-force-dependent facilitation of actin polymerization at FAs.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3