Sarcomere length measurement permits high resolution normalization of muscle fiber length in architectural studies

Author:

Felder Amanda1,Ward Samuel R.1,Lieber Richard L.1

Affiliation:

1. Departments of Orthopaedic Surgery and Bioengineering, University of California and Department of Veterans Affairs Medical Centers, San Diego, CA 92161, USA

Abstract

SUMMARY The use of sarcomere length to normalize fiber length in architectural studies is commonly practiced but has not been explicitly validated. Using mouse hindlimb muscles as a model system, ankle joints were intentionally set to angles ranging from 30° to 150° and their muscles fixed. Tibialis anterior (TA), extensor digitorum longus (EDL) and soleus muscles were removed and their raw fiber length measured. Sarcomere length was then measured for each fiber length sample and fiber length was normalized to a standard sarcomere length. As expected, raw fiber length was dependent on tibiotarsal angle (P<0.0005 for all muscles, r2 range 0.22–0.61), while sarcomere length normalization eliminated the joint-angle dependent variation in fiber length (P>0.24, r2 range 0.001–0.028). Similarly, one-way ANOVA revealed no significant differences in normalized fiber length among ankle angles for any of the three muscles (P>0.1), regardless of animal size. To determine the resolution of the method, power calculations were performed. For all muscles studied, there was >90% chance of detecting a 15% fiber length difference among muscles and >60% chance of detecting fiber length differences as small as 10%. We thus conclude that the use of sarcomere length normalization in architectural studies permits resolution of fiber length variations of 15% and may even be effective at resolving 10%fiber length variations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3