Effect of serotonin on ciliary beating and intracellular calcium concentration in identified populations of embryonic ciliary cells

Author:

Doran Shandra A.1,Koss Ron1,Tran Cam Ha1,Christopher Kimberly J.1,Gallin Warren J.1,Goldberg Jeffrey I.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton,Alberta, Canada, T6G 2E9

Abstract

SUMMARYEmbryos of the pond snail Helisoma trivolvis express three known subtypes of ciliary cells on the surface of the embryo early in development:pedal, dorsolateral and scattered single ciliary cells (SSCCs). The pedal and dorsolateral ciliary cells are innervated by a pair of serotonergic sensory-motor neurons and are responsible for generating the earliest whole-animal behavior, rotation within the egg capsule. Previous cell culture studies on unidentified ciliary cells revealed that serotonin(5-hydroxytryptamine; 5-HT) produces a significant increase in the ciliary beat frequency (CBF) in a large proportion of ciliary cells. Both Ca2+ influx and a unique isoform of protein kinase C (PKC) were implicated in the signal transduction pathway underlying the cilio-excitatory response to 5-HT. The goal of the present study was to characterize the anatomical and physiological differences between the three known populations of superficial ciliary cells. The pedal and dorsolateral ciliary cells shared common structural characteristics, including flat morphology, dense cilia and lateral accessory ciliary rootlets. By contrast, the SSCCs had a cuboidal morphology, reduced number of cilia, increased ciliary length and absence of lateral accessory rootlets. In cultures containing unidentified ciliary cells,the calcium/calmodulin-dependent enzyme inhibitor calmidazolium (2 μmol l–1) blocked the stimulatory effect of 5-HT (100 μmol l–1) on CBF. In addition, 50% of unidentified cultured cells responded to 5-HT (100 μmol l–1) with an increase in[Ca2+]i. To facilitate the functional analyses of the individual populations, we developed a method to culture identified ciliary subtypes and characterized their ciliary and calcium responses to 5-HT. In cultures containing either pedal or dorsolateral ciliary cells, 5-HT (100μmol l–1) produced a rapid increase in CBF and a slower increase in [Ca2+]i in all cells examined. By contrast,the CBF and [Ca2+]i of SSCCs were not affected by 100μmol l–1 5-HT. Immunohistochemistry for two putative 5-HT receptors recently cloned from Helisoma revealed that pedal and dorsolateral ciliary cells consistently express the 5-HT1Helprotein. Intense 5-HT7Hel immunoreactivity was observed in only a subset of pedal and dorsolateral ciliary cells. Cells neighboring the SSCCs,but not the ciliary cells themselves, expressed 5-HT1Hel and 5-HT7Hel immunoreactivity. These data suggest that the pedal and dorsolateral ciliary cells, but not the SSCCs are a homogeneous physiological subtype that will be useful for elucidating the signal transduction mechanisms underlying 5-HT induced cilio-excitation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3