Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms

Author:

Davidson E.H.1,Cameron R.A.1,Ransick A.1

Affiliation:

1. Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA. davidson@mirsky.caltech.edu

Abstract

An early set of blastomere specifications occurs during cleavage in the sea urchin embryo, the result of both conditional and autonomous processes, as proposed in the model for this embryo set forth in 1989. Recent experimental results have greatly illuminated the mechanisms of specification in some early embryonic territories, though others remain obscure. We review the progressive process of specification within given lineage elements, and with reference to the early axial organization of the embryo. Evidence for the conditional specification of the veg2 lineage subelement of the endoderm and other potential interblastomere signaling interactions in the cleavage-stage embryo are summarized. Definitive boundaries between mesoderm and endoderm territories of the vegetal plate, and between endoderm and overlying ectoderm, are not established until later in development. These processes have been clarified by numerous observations on spatial expression of various genes, and by elegant lineage labeling studies. The early specification events depend on regional mobilization of maternal regulatory factors resulting at once in the zygotic expression of genes encoding transcription factors, as well as downstream genes encoding proteins characteristic of the cell types that will much later arise from the progeny of the specified blastomeres. This embryo displays a maximal form of indirect development. The gene regulatory network underlying the embryonic development reflects the relative simplicity of the completed larva and of the processes required for its formation. The requirements for postembryonic adult body plan formation in the larval rudiment include engagement of a new level of genetic regulatory apparatus, exemplified by the Hox gene complex.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3