A common mechanism controls the life cycle and architecture of plants

Author:

Ratcliffe O.J.1,Amaya I.1,Vincent C.A.1,Rothstein S.1,Carpenter R.1,Coen E.S.1,Bradley D.J.1

Affiliation:

1. Genetics Department, John Innes Centre, Norwich, UK.

Abstract

The overall aerial architecture of flowering plants depends on a group of meristematic cells in the shoot apex. We demonstrate that the Arabidopsis TERMINAL FLOWER 1 gene has a unified effect on the rate of progression of the shoot apex through different developmental phases. In transgenic Arabidopsis plants which ectopically express TERMINAL FLOWER 1, both the vegetative and reproductive phases are greatly extended. As a consequence, these plants exhibit dramatic changes in their overall morphology, producing an enlarged vegetative rosette of leaves, followed by a highly branched inflorescence which eventually forms normal flowers. Activity of the floral meristem identity genes LEAFY and APETALA 1 is not directly inhibited by TERMINAL FLOWER 1, but their upregulation is markedly delayed compared to wild-type controls. These phenotypic and molecular effects complement those observed in the tfl1 mutant, where all phases are shortened. The results suggest that TERMINAL FLOWER 1 participates in a common mechanism underlying major shoot apical phase transitions, rather than there being unrelated mechanisms which regulate each specific transition during the life cycle.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3