Two regulatory genes, cNkx5-1 and cPax2, show different responses to local signals during otic placode and vesicle formation in the chick embryo

Author:

Herbrand H.1,Guthrie S.1,Hadrys T.1,Hoffmann S.1,Arnold H.H.1,Rinkwitz-Brandt S.1,Bober E.1

Affiliation:

1. Department of Cell and Molecular Biology, Technical University Braunschweig, Braunschweig, Germany.

Abstract

The early stages of otic placode development depend on signals from neighbouring tissues including the hindbrain. The identity of these signals and of the responding placodal genes, however, is not known. We have identified a chick homeobox gene cNkx5-1, which is expressed in the otic placode beginning at stage 10 and exhibits a dynamic expression pattern during formation and further differentiation of the otic vesicle. In a series of heterotopic transplantation experiments, we demonstrate that cNkx5-1 can be activated in ectopic positions. However, significant differences in otic development and cNkx5-1 gene activity were observed when placodes were transplanted into the more rostral positions within the head mesenchyme or into the wing buds of older hosts. These results indicate that only the rostral tissues were able to induce and/or maintain ear development. Ectopically induced cNkx5-1 expression always reproduced the endogenous pattern within the lateral wall of the otocyst that is destined to form vestibular structures. In contrast, cPax2 which is expressed in the medial wall of the early otic vesicle later forming the cochlea never resumed its correct expression pattern after transplantation. Our experiments illustrate that only some aspects of gene expression and presumably pattern formation during inner ear development can be established and maintained ectopically. In particular, the dorsal vestibular structures seem to be programmed earlier and differently from the ventral cochlear part.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3